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Introduction. In this paper we continue the study started in our previous
papers [1, 2]. In [2] we consider the Moore–Penrose inversion problem for singu-
lar upper bidiagonal matrices

A =


d1 b1

d2 b2 0
. . . . . .

0 dn−1 bn−1
dn

 (1)

with any arrangement of one or more zeros on the main diagonal and
under assumption b1,b2, . . . ,bn−1 6= 0. To solve the problem in [2] we carried out
some preliminary constructions and calculations. Recall the main steps of the
proposed approach. First we have represented the matrix (1) in the block form

A =


A1 B1

A2 B2
. . . . . .

Am−1 Bm−1
Am

 (2)

with diagonal blocks Ak, k = 1,2, . . . ,m, of the size nk × nk and over-diagonal
blocks Bk, k = 1,2, . . . ,m− 1, of the size nk× nk+1, where n1 + n2 + · · ·+ nm = n.
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The structure of the blocks was specified in the Introduction of [2].
Further, it has been shown that the Moore–Penrose inverse A+ of the matrix (2) has
the following block form:

A+ =


Z1
H2 Z2 0

. . . . . .
0 Hm−1 Zm−1

Hm Zm

 , (3)

and the blocks Zk and Hk are computed by the formulae

Zk = lim
ε→+0

Lk(ε)
−1AT

k , k = 1,2, . . . ,m , (4)

Hk = lim
ε→+0

Lk(ε)
−1BT

k−1 , k = 2,3, . . . ,m , (5)

where
L1(ε) = AT

1 A1 + εI1 , (6)

Lk(ε) = AT
k Ak +BT

k−1Bk−1 + εIk , k = 2,3, . . . ,m, (7)

and Ik stands for the identity matrix of order nk (see [2] A Way of Computing the
Moore–Penrose Invertion).

The problem of computing the block Z1 is completely discussed in [2]
(see Block Z1).

As it is seen from (4) and (7) for the values k = 2,3, . . . ,m, the blocks Zk are
computed by similar formulae. The same can be said about the blocks Hk
(see (5) and (7)). The difference consists only in sizes and types of the diagonal
blocks Ak (see [2] Introduction). Note that each block Ak separately is an upper
bidiagonal matrix. Therefore we realize the computation of the blocks Zk and Hk
by solving several standard model problems. To this end we introduced a model
tridiagonal matrix

L(ε) = AT A+BT B+ εI, (8)

which is constructed by other model matrices

A =


d1 b1

d2 b2 0
. . . . . .

0 dn−1 bn−1
dn

 and B =


0 0 . . . 0
...

... . . .
...

0 0 . . . 0
∆ 0 . . . 0

 (9)

(we assume that the entries b1,b2, . . . ,bn−1 of the matrix A as well as the entry ∆ of
the l×n matrix B are nonzero.)

In the model problems we will also consider the case when the matrix A from
(9) is nonsingular. The formulae for the entries of the inverse matrix L(ε)−1 were
derived in [2] (see Invertion of a Model Matrix L(ε)).
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Thus, as it was mentioned in [2], our next task is to compute the model matrices

Z = lim
ε→+0

L(ε)−1AT (10)

and
H = lim

ε→+0
L(ε)−1BT , (11)

where L(ε), A, B are specified in (8) and (9). In this connection we will separately
consider the cases A, B and C outlined in [2] (Invertion of a Model Matrix L(ε)).

Computation of the Model Matrices Z and H.
Case A. Remind that this case provides n≥ 1 and d1,d2, . . . ,dn 6= 0.
If n = 1, then the matrices Z and H have a simple view:

Z =

[
d1

d2
1 +∆2

]
1×1

, H =

[
0 . . .0

∆

d2
1 +∆2

]
1×l

. (12)

It can be easily obtained from the equalities (10) and (11).
The case n ≥ 2 is more complicated. Let us start with the computation of the

matrix Z = [zi j]n×n. For this purpose consider the matrix

L(ε)−1AT ≡ Y (ε) = [yi j(ε)]n×n . (13)

According to the definition (10) of the matrix Z, we have

zi j = lim
ε→+0

yi j(ε) , i, j = 1,2, . . . ,n. (14)

As it follows from (13), for indeces 1 ≤ j ≤ n− 1 the entries yi j(ε) of the
matrix Y (ε) are calculated by the rule

yi j(ε) = xi jd j + xi j+1b j, i = 1,2, . . . ,n . (15)

For a fixed index j in the range 1 ≤ j ≤ n− 1 let us separately consider the cases
i = 1,2, . . . , j and i = j+1, j+2, . . . ,n.

• Case i = 1,2, . . . , j.
Using the expressions for the entries xi j of the matrix L(ε)−1 (see formula (43)

in [2]), from (15) we obtain

yi j(ε) = tνi(µ jd j +µ j+1b j). (16)

Then, using the representations of the quantities µi (see (27) in [2]), we get

µ jd j +µ j+1b j = (
◦
µ j d j+

◦
µ j+1 b j)+O(ε). (17)

Substituting the expression (17) as well as the representations of the quantities νi and
t (see (33) and (39) in [2]) into the right hand side of the equality (16), we obtain

yi j(ε) =
(
◦
ν i +O(ε))((

◦
µ j d j+

◦
µ j+1 b j)+O(ε))

◦
t +O(ε)

.

Then, calculating the limit as ε →+0, according to (14), we find that

zi j =

◦
ν i (

◦
µ j d j+

◦
µ j+1 b j)

◦
t

, i = 1,2, . . . , j . (18)
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In the [2](Case B) we obtained the expression (40) for the quantity
◦
t . Therefore,

we get

zi j =

◦
ν i (

◦
µ j d j+

◦
µ j+1 b j)

d2
n
◦
νn +∆2α1

, i = 1,2, . . . , j . (19)

To derive the closed form expressions for the entries of the matrix Z, let us
trasform the right hand side of the equality (19). First consider the sum
◦
µ j d j+

◦
µ j+1 b j. Using the closed form expression for the quantity

◦
µ i (see formula

(29) in [2]), we have
◦
µ j d j+

◦
µ j+1 b j = (−1)n− j

[
d j

n−1

∏
s= j

rs−b j

n−1

∏
s= j+1

rs

]

+(−1)n− j d2
n

[
d j

n−1

∑
k= j

1
d2

k

(
k−1

∏
s= j

rs

)(
n−1

∏
s=k

1
rs

)

−b j

n−1

∑
k= j+1

1
d2

k

(
k−1

∏
s= j+1

rs

)(
n−1

∏
s=k

1
rs

)]
≡ J1 + J2 .

(20)

It can be readily shown that J1 = 0. The addend J2 is transformed as follows:

J2 = (−1)n− jd2
n d j

[
n−1

∑
k= j

1
d2

k

(
k−1

∏
s= j

rs

)(
n−1

∏
s=k

1
rs

)

−
n−1

∑
k= j+1

1
d2

k

(
k−1

∏
s= j

rs

)(
n−1

∏
s=k

1
rs

)]

= (−1)n− jd2
n d j ·

1
d2

j

n−1

∏
s= j

1
rs

= (−1)n− j d2
n

d j

n−1

∏
s= j

1
rs
.

(21)

Thus, from (20) and (21) we get
◦
µ j d j+

◦
µ j+1 b j = (−1)n− j d2

n

d j

n−1

∏
s= j

1
rs
. (22)

Further, using the expressions for the quantites αi and
◦
ν i (see formulae (31)

and (35) from [2]), we can write the sum d2
n
◦
νn +∆2α1 in the following form:

d2
n
◦
νn +∆2α1 =

(−1)n−1d2
n

[
n−1

∏
s=1

1
rs
+∆

2
n−1

∑
k=1

1
b2

k

(
k

∏
s=1

rs

)(
n−1

∏
s=k+1

1
rs

)]
+(−1)n−1

∆
2

n−1

∏
s=1

rs .
(23)

Finally, if we replace the expression of the quantity
◦
ν i (see formula (35) in [2])

as well as the expressions (22) and (23) into the equality (19), for the values of indeces
1≤ j ≤ n−1 and i = 1,2, . . . , j, we get

zi j =

(−1)i+ j

[
i−1

∏
s=1

1
rs
+∆

2
i−1

∑
k=1

1
b2

k

(
k

∏
s=1

rs

)(
i−1

∏
s=k+1

1
rs

)]
· d

2
n

d j

n−1

∏
s= j

1
rs

d2
n

[
n−1

∏
s=1

1
rs
+∆

2
n−1

∑
k=1

1
b2

k

(
k

∏
s=1

rs

)(
n−1

∏
s=k+1

1
rs

)]
+∆

2
n−1

∏
s=1

rs

. (24)
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• Case i = j+1, j+2, . . . ,n.
Using the expressions for the entries xi j of the matrix L(ε)−1 (formula (42)

in [2]), from (15) we have

yi j(ε) = tµi(ν jd j +ν j+1b j). (25)

Then, having the representations of the quantities νi (see (33) in [2]), we get

ν jd j +ν j+1b j = (
◦
ν j d j+

◦
ν j+1 b j)+O(ε). (26)

Substituting the expression (26) as well as the representations of the quantities µi and
t (see (27) and (39) in [2]) into the right hand side of the equality (25), we obtain

yi j(ε) =
(
◦
µ i +O(ε))((

◦
ν j d j+

◦
ν j+1 b j)+O(ε))

◦
t +O(ε)

.

Calculating the limit in the last equality as ε →+0, according to (14), we find

zi j =

◦
µ i (

◦
ν j d j+

◦
ν j+1 b j)

◦
t

, i = j+1, j+2, . . . ,n, (27)

or, by analogy with (19), zi j =

◦
µ i (

◦
ν j d j+

◦
ν j+1 b j)

d2
n
◦
νn +∆2α1

, i = j+1, j+2, . . . ,n .

From here, performing calculations similar to those that led to the formula
(24), we obtain

zi j =

(−1)i+ j+1

[
n−1

∏
s=i

rs +d2
n

n−1

∑
k=i

1
d2

k

(
k−1

∏
s=i

rs

)(
n−1

∏
s=k

1
rs

)]
· ∆

2

d j

j−1

∏
s=1

rs

d2
n

[
n−1

∏
s=1

1
rs
+∆

2
n−1

∑
k=1

1
b2

k

(
k

∏
s=1

rs

)(
n−1

∏
s=k+1

1
rs

)]
+∆

2
n−1

∏
s=1

rs

(28)

for the of indeces 1≤ j ≤ n−1 and i = j+1, j+2, . . . ,n.
So it remains to deduce expressions for the entries of the last column of the

matrix Z. As follows from (13), the entries yin(ε) of the matrix Y (ε) are calculated
by the rule yin(ε) = xindn, i = 1,2, . . . ,n . According to the formula (43), from [2] we
have xin = µnνit, and since µn = 1 (see (8) in [1]) we get yin(ε)= νitdn, i= 1,2, . . . ,n .
Thus, a similar argument that led us to the expressions (18) and (24), we find that

zin =
dn
◦
ν i
◦
t

, i = 1,2, . . . ,n, (29)

or otherwise

zin =

(−1)n−i dn

[
i−1

∏
s=1

1
rs
+∆

2
i−1

∑
k=1

1
b2

k

(
k

∏
s=1

rs

)(
i−1

∏
s=k+1

1
rs

)]

d2
n

[
n−1

∏
s=1

1
rs
+∆

2
n−1

∑
k=1

1
b2

k

(
k

∏
s=1

rs

)(
n−1

∏
s=k+1

1
rs

)]
+∆

2
n−1

∏
s=1

rs

, (30)

where i = 1,2, . . . ,n.
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R e m a r k . It is easy to see that the formula (30) can be “incorporated” in
the formula (24), if we extend the last one to the case j = n.

Summarizing the considerations of the section, namely having the expressions
(12),(24) and (28), we get the following statement.

L e m m a 1 [Case A]. For the matrix Z = [zi j]n×n defined in (10) we have:
if n = 1, then

Z =

[
d1

d2
1 +∆2

]
1×1

;

if n≥ 2, then:
a) for the indeces j = 1,2, . . . ,n and i = 1,2, . . . , j the entries zi j are computed

by the formula (24);
b) for the indeces j = 1,2, . . . ,n− 1 and i = j+ 1, j+ 2, . . . ,n the entries zi j

are computed by the formula (28).
Now consider the matrix H = [hi j]n×l . We introduce the matrix

L(ε)−1BT ≡W (ε) = [wi j(ε)]n×n . (31)

By the definition (11) of the matrix H we have

hi j = lim
ε→+0

wi j(ε) , i = 1,2, . . . ,n, j = 1,2, . . . , l . (32)

It can be easily seen that the entries of the first l− 1 columns of the matrix
W (ε) are zero. This implies that the corresponding columns of the matrix H are also
zeros. The entries of the last column of the matrix W (ε) are written as follows:

wil(ε) = xi1∆, i = 1,2, . . . ,n .

Since xi1 = µiν1t (see formula (42) in [2]) and ν1 = 1 (see (9) in [1]), then

wil(ε) = µit∆, i = 1,2, . . . ,n .

Thus, by the argument leading us to the expressions (18) and (24), we find that

hil =
◦
µ i ∆/

◦
t , i = 1,2, . . . ,n, (33)

or otherwise

hil =

(−1)i+1
∆

[
n−1

∏
s=i

rs +d2
n

n−1

∑
k=i

1
d2

k

(
k−1

∏
s=i

rs

)(
n−1

∏
s=k

1
rs

)]

d2
n

[
n−1

∏
s=1

1
rs
+∆

2
n−1

∑
k=1

1
b2

k

(
k

∏
s=1

rs

)(
n−1

∏
s=k+1

1
rs

)]
+∆

2
n−1

∏
s=1

rs

, (34)

where i = 1,2, . . . ,n.
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Having (12) and (34), we get.
L e m m a 2 [Case A]. The matrix H = [hi j]n×l defined in (11) satisfies the

relationes:
if n = 1, then

H =

[
0 . . .0

∆

d2
1 +∆2

]
1×l

,

if n≥ 2, then:
a) hi j = 0 for the indexes j = 1,2, . . . , l−1 and i = 1,2, . . . ,n;
b) the entries hil , i = 1,2, . . . ,n, are computed by the formula (34).
Intermediate formulae and relations obtained in the section and in the second

part of this work [2] allow us to propose the following numerical algorithm to
compute the matrices Z and H.

Algorithm Z, H/CaseA (A,∆,n, l⇒ Z,H)
If n = 1, then

Z =

[
d1

d2
1 +∆2

]
1×1

, H =

[
0 . . .0

∆

d2
1 +∆2

]
1×l

.

If n≥ 2, then
1. Compute the quantities rs (see (20) from [2]):

rs = bs/ds, s = 1,2, . . . ,n−1; r0 = r1 = 1 .

2. Compute the quantities αi, i = 1,2, . . . ,n−1 (see (32) from [2]):

αn−1 =−rn−1; αi =−riαi+1, i = n−2,n−3, . . . ,1.

3. Compute the quantities βi, i = 1,2, . . . ,n−1 (see (38) from [2]):

β1 =−r1; βi+1 =−ri+1βi, i = 1,2, . . . ,n−2.

4. Compute the quantities
◦
µ i, i = 1,2, . . . ,n (see (28) and (30) from [2]):

◦
µn= 1;

◦
µ i=−ri

◦
µ i+1 +

d2
n

d2
i

1
αi
, i = n−1,n−2, . . . ,1.

5. Compute the quantities
◦
ν i, i = 1,2, . . . ,n (see (34) and (36) from [2]):

◦
ν1= 1;

◦
ν i+1=−

1
ri

◦
ν i +

∆2

b2
i

βi, i = 1,2, . . . ,n−1.

6. Compute the quantity
◦
t (see (40) from [2]):
◦
t= d2

n
◦
νn +∆

2
α1 .

7. Compute the entries from the upper triangular part of the matrix Z
(see (18)):

for the values j = 1,2, . . . ,n−1:

zi j =
◦
ν i (

◦
µ j d j+

◦
µ j+1 b j)/

◦
t , i = 1,2, . . . , j .
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8. Compute the entries from the lower triangular part of the matrix Z
(see (27)):

for the values j = 1,2, . . . ,n−1:

zi j =
◦
µ i (

◦
ν j d j+

◦
ν j+1 b j)/

◦
t , i = j+1, j+2, . . . ,n .

9. Compute the entries of the last column of the matrix Z (see (29)):

zin = dn
◦
ν i /

◦
t , i = 1,2, . . . ,n .

10. Compute the entries of the matrix H (see (33)):

hi j = 0, j = 1,2, . . . , l−1 , i = 1,2, . . . ,n ;

hil =
◦
µ i ∆/

◦
t , i = 1,2, . . . ,n .

End
Direct calculations show that the numerical implementation of the algorithm

Z,H/CaseA requires n2 +O(n) arithmetical operations. Thus the algorithm may be
considered as an optimal one.

Case B. This case implies n≥ 2 and d1,d2, . . . ,dn−1 6= 0, dn = 0 (see [2]).
The difference between the cases A and B consists only in the value of the

quantity dn. In the first case we have dn 6= 0, while in the second one dn = 0. So
we can use all the formulae and the expressions obtained in the previous section
substituting dn = 0.

As a consequence of the Lemma 1 we get the following statement.
L e m m a 3 [Case B]. For the matrix Z = [zi j]n×n defined in (10) we have:

a) zi j = 0 for the indeces j = 1,2, . . . ,n and i = 1,2, . . . , j;

b) for the indeces j = 1,2, . . . ,n− 1 and i = j+ 1, j+ 2, . . . ,n the entries zi j

are computed by the formula

zi j =
(−1)i+ j+1

d j

i−1

∏
s= j

1
rs
. (35)

The computing process of the lower triangular part entries of the matrix Z
can be organized as follows. Consider fixed value of the index j from the range
1≤ j ≤ n−1. For i = j+1, from (35) we get

z j+1 j =
1

d jr j
=

1
b j

. (36)

Further, for the subsequent values i = j + 2, j + 3, . . . ,n, again due to (35)
the following relation holds:

zi j =−
zi−1 j

ri−1
. (37)

Consider the matrix H. Setting dn = 0, as a consequence of the Lemma 2 we
obtain the following statement.

L e m m a 4 [Case B]. For the matrix H = [hi j]n×l defined in (11) we have:

a) hi j = 0 for the indeces j = 1,2, . . . , l−1 and i = 1,2, . . . ,n;
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b) the entries hil are computed by the formula

hil =
(−1)i+1

∆

i−1

∏
s=1

1
rs
, i = 1,2, . . . ,n . (38)

The computation of the last column of the matrix H can also be carried out by
a recurrence relation. If i = 1, then from (38) we have

h1l =
1
∆
. (39)

One can easily obtain from (38), that for the values i = 2,3, . . . ,n we have

hil =−
hi−1 l

ri−1
. (40)

Having the formulae and relations obtained above, we can write the following
algorithm to compute the entries of the matrices Z and H.
Algorithm Z,H/CaseB (A,∆,n, l⇒ Z,H)

1. Compute the quantities rs (see (20) from [2]):
rs = bs/ds, s = 1,2, . . . ,n−1; r0 = r1 = 1 .

2. Compute the entries of the upper triangular part of matrix Z (Lemma 3):
for the values j = 1,2, . . . ,n:

zi j = 0, i = 1,2, . . . , j .
3. Compute the entries of the lower triangular part of matrix Z, see (36), (37):

for the values j = 1,2, . . . ,n−1:
z j+1 j = 1/b j ; zi j =−zi−1 j/ri−1 , i = j+2, j+3, . . . ,n .

4. Compute the entries of the matrix H (see Lemma 4 and (39), (40)):
hi j = 0, j = 1,2, . . . , l−1 , i = 1,2, . . . ,n ;

h1l = 1/∆ ; hil =−hi−1 l/ri−1 , i = 2,3, . . . ,n .
End

By direct calculations we find that the numerical implementation of the
algorithm Z,H/CaseB requires 0.5n2 + O(n) arithmetical operations. Thus, the
algorithm may also be considered as an optimal one.

Case C. The case implies n≥ 1 and d1 = d2 = · · ·= dn = 0 (see [2]).
If n = 1, the matrices Z and H have a very simple view:

Z = [0]1×1 , H =

[
0 . . .0

1
∆

]
1×l

.

It obviously follows from (9), (10) and (11). The formulae for n≥ 2 are derived quite
easily, using a technique, by which the cases A and B were examined. Therefore, let
us formulate only the final results.

L e m m a 5 [Case C]. For the matrix Z = [zi j]n×n defined in (10) we have:
if n = 1, then Z = [0]1×1;

if n≥ 2, then zi i−1 =
1

bi−1
, i = 2,3, . . . ,n, and zi j = 0 in the remaining cases.

L e m m a 6 [Case C]. For the matrix H = [hi j]n×l defined in (11) we have:

h1l =
1
∆

and hi j = 0 in the remaining cases.

Due to the simplicity of the expressions for the entries of the matrices Z and H
there is no need to write a special algorithm. We just point out that the computation
of these matrices requires n arithmetical operations.
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Concluding Remarks. Summarizing the preliminary results obtained in this
paper as well as in previous papers [1, 2], in the next final part of the study we will
give definitive solution to the Moore–Penrose inversions problem for singular upper
bidiagonal matrices.
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